Technical Specifications Datasheet May 2020 BP100, Rev AA

Mobrey Boiler Water Level Controls

Overview of Mobrey Boiler Water Level Controls

Introduction

Mobrey originally entered the industrial boiler control market in 1923 with a range of steam operated equipment. Since that time, the range has expanded to cover most aspects of control associated with the boiler house.

The products include a range of electromechanical float controls and associated valves. These reliable products are described in greater detail on the following pages and each carries the quality and service guarantee synonymous with the Mobrey name.

Alarm and Pump Control

Mobrey Vertical Air Break Controls are a comprehensive range of magnetically operated water level controls. They are designed to meet all the requirements for automatic on/off control of boiler feed pump, burner cut-out, high and/or low level alarm or any combination of these.

Modulating water level controllers

The Mobrey Controller is a single-element electro-hydraulic control with an electronic feedback. The system consists of a control unit float chamber, a feed-line modulating valve and a control box. It is used for the throttle control with the modulating valve in the boiler feed line.

Sequencing blow-down valves

The Mobrey Sequencing Valve is designed to function as a manually operated combined water isolating valve and sequencing valve. It provides positive purging of the water connection, float chamber and steam connection of a boiler control.

Contents

Overview of Mobrey Boiler Water Level Controls	. page 2
Vertical air break alarm and pump controls	. page 3

Modulating water level controllers page 9
Sequencing blowdown valves page 14

Vertical air break alarm and pump controls

Description

The Mobrey Vertical Air Break Controls (VABC) are a comprehensive range of magnetically operated water level controls for steam boilers. They are designed to meet all requirements for automatic on/off control of boiler feed pump, burner cut out, high and/or low level alarm or any combination of these.

Models available with Industrial (NEMA4) or Marine Heads. TÜV approved models are available in chambers and for direct mounting.

Operation

The Mobrey VABC is a gland-less construction. A primary permanent magnet is attached to the float rod and slides vertically inside a non-magnetic stainless steel centre tube. Movements of the float are transmitted to a secondary magnet in each switch unit. There are two pairs of contacts which are operated with a snap-action and held by repulsion between the secondary magnet and the tertiary magnet of the switch unit assembly.

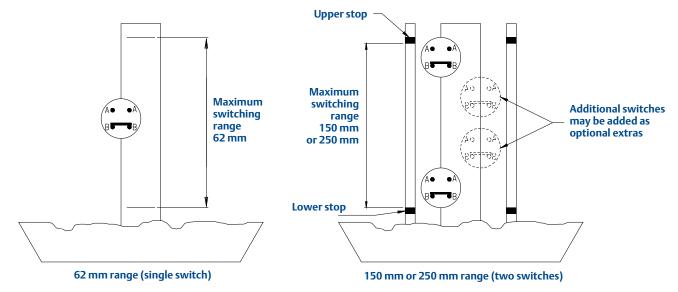
Operating Levels

Differentials

Each level switch has a nominal fixed water level differential of 25 mm between circuits A-A and B-B. To obtain a differential greater than 25 mm, two switch units must be used. The minimum water level differential for two switch units is 33 mm, with switch centres positioned 8 mm apart.

The maximum adjustable differential for two switch mechanisms varies with the operating range of each model, i.e. the distance between a rising and falling level which is required to operate the switches positioned at the extreme ends of their adjustments (Figure 1).

2 x SPST


AA make on rise

BB make on fall

Switches have adjustments as follows:

- 62 mm range: 37 mm adjustment + 25 mm fixed differential = 62 mm
- 150 mm range: 125 mm adjustment + 25 mm fixed differential = 150 mm
- 250mm range: 225 mm adjustment + 25 mm fixed differential = 250mm

Figure 1. Cut-away illustration showing switch adjustments

B

Link for SPDT/SPCO

AC maximum values			DC maximum values					
VA	Volts	Amps	Watts	Volts	Resistive amps			
2000 ⁽¹⁾	440	5	100	250	5	0.5 ⁽²⁾	40 ms	

Table 1. Electrical ratings for Single-Pole Double-Throw (SPDT) operation

(1) Maximum power factor is 0.4.

(2) Maximum up to 2 A dependent upon time constant of circuit. Consult factory.

Note

- Switches must not be used for the direct starting of motors.
- Contacts should be wired in series with the operating coils of relays, contact starters or solenoid valves, and fused separately.
- Two 25 mm BS4568 cable entries are provided for the electrical connections. A sufficient length of flexible cable must be fitted to permit easy removal of the switch head and float assembly for routine maintenance.

Dimensional drawings for chamber mounted models

	_	Operate	No. of s	witches				Dir	nensio	ons		
Chamber and switch head	Type number	range (mm)	Std.	Max.	and screwed connections	с	G	н	H1	L	w	F
F F	Cast iron chamber (working pressure: 13 kg/cm ²)											
	BX02/1	62	1	-	DN25 PN16	-	102	193	303	366	182	160
H1 H	BX05/2	150	2	4	DN25 PN16	-	102	293	497	468	277	160
	BX07/2	250	2	6	DN25 PN16	-	102	393	602	557	370	160
	Fabricated steel chamber (working pressure: 21 kg/cm ²)											
w 100	BX09/1	62	1	-	DN25 PN40	-	87	193	303	366	182	160
	BX10/2	150	2	4	DN25 PN40	-	87	293	497	468	277	160
	BX11/2	250	2	6	DN25 PN40	-	87	393	602	557	370	160
Lowest	Fabricate	ed steel cl	namber	working	g pressure: 32 kg/cn	n ²)						
operating level band	BX12/1	62	1	-	DN25 PN40	-	102	193	303	366	182	160
	BX13/2	150	2	4	DN25 PN40	-	102	293	497	468	277	160
G	BX14/2	250	2	6	DN25 PN40	-	102	393	602	557	370	160

Table 2. Side-and-bottom chamber dimensional and operating data

Explanation of type numbers

- The type numbers are arbitrary except that BX denotes chamber mounting and BD denotes direct mounting.
- The stroke number (e.g. ****/n) indicates the number of switch units fitted as standard. When extra switches are required, this stroke number will indicate the total number of switches to be provided.
- When Marine models are required the letter 'M' is inserted after the letters BX and before the number, e.g., the Industrial and NEMA 4 model BX05/2 becomes BXM05/2 when in Marine construction.

Marine type approvals:

- American Bureau of Shipping
- Bureau Veritas
- Det Norske Veritas, Germanischer Lloyd
- Russian Maritime Register of Shipping
- TUV approved models (side and side connections only) are available on request. Before ordering, please contact us. If the models shown here do not meet your specific requirements, please contact us for assistance.

		Operate	No. of s	witches				Dir	mensio	ons		
Chamber and switch head	Type number	range (mm)	Std.	Max.	EN1092 flanged connections	с	G	н	Н1	L	w	F
	Cast iron chamber with 1-in. BSP drain connection (working pressure: 13 kg/cm ²)											
	BX03/1	62	1	-	DN 25 PN16	216	102	193	303	448	277	160
	BX15/1	62	1	-	DN20 PN16	180	100	193	303	480	240	160
F F	BX87/1	62	1	-	DN20 PN16	180	135	193	303	480	240	160
	BX16/2	120	2	4	DN20 PN16	180	100	293	497	480	240	160
H1 H	BX88/2	120	2	4	DN20 PN16	180	135	293	497	480	240	160
	BX06/2	150	2	4	DN 25 PN16	216	102	293	497	448	277	160
	BX08/2	250	2	6	DN 25 PN16	317	102	393	597	557	370	160
100	Fabricated steel chamber with ½-in. BSP drain connection (working pressure: 21 kg/cm ²)											
w A	BX17/1	62	1	-	DN20 PN40	270	100	193	303	570	335	160
	BX45/1	62	1	-	DN25 PN40	270	100	193	303	570	335	160
	BX18/2	120	2	4	DN20 PN40	270	100	293	497	570	335	160
	BX19/2	150	2	4	DN25 PN40	270	100	293	497	570	335	160
Lowest	BX20/2	150	2	4	DN20 PN40	270	100	393	497	570	335	160
operating level band	BX21/2	215	2	6	DN25 PN40	270	100	393	602	570	335	160
	BX22/2	215	2	6	DN25 PN40	270	100	393	602	570	335	160
G	Fabricate	ed steel ch	namber	with ½-i	n. BSP drain connec	tion (v	vorking	g press	sure: 32	2 kg/cn	n ²)	
	BX23/1	62	1	-	DN 25 PN40	350	112	193	303	595	372	160
	BX24/2	150	2	4	DN 25 PN40	350	112	293	497	595	372	160
	BX25/2	250	2	6	DN 25 PN40	350	112	393	597	595	372	160

Table 3. Side-and-side chamber dimensional and operating data

Chamber Mounted Controls

Float chambers are manufactured in these approved materials:

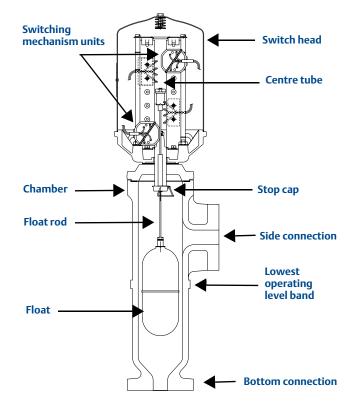
- Cast iron equal to BS1452 Grade 17

 for up to 13 kg/cm² rating.
- Fabricated steel BS3602 HFS 27

 for both 21 kg/cm² and 32 kg/cm² ratings.

For chamber dimensions and process connections arrangement see Table 2 on page 4 and Table 3 on page 5.

Switch heads contain one or more switching mechanism units mounted in a housing comprising die-cast base with a zinc coated mild steel casing.


Two 25mm BS.4568 cable entries are provided.

Switching mechanism units have single pole double throw contacts, are latching and are positioned and held in place by clamp screws.

The **centre tube** is made of non-magnetic stainless steel and expanded into the top cover flange. It is fitted with a stop cap which also acts as a guide for the float rod carrying the primary magnet.

Floats are manufactured in Monel metal.

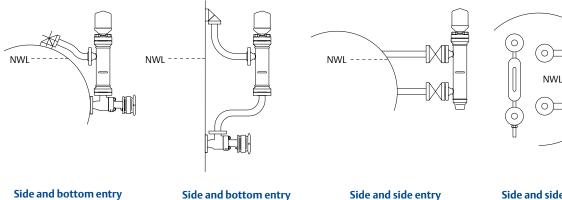

Float rods are manufactured in stainless steel.

Figure 2. Chamber mounted controls

The Chamber band mark indicates the lowest adjustment position of the low level alarm. We recommend that the positioning of the boiler control chamber is relative to the water level gauge glass and that, even at the lowest operating band level, the N.W.L. is such that there is always water visible in a gauge glass. Arrangements of Mobrey Vertical Air Break Controls on various types of boiler are shown in Figure 3.

Figure 3. Typical mounting arrangements

chamber with sequencing chamber valve on horizontal boiler valve on

chamber with sequencing valve on vertical boiler

Side and side entry chamber on horizontal boiler

Side and side entry chamber on steam drum of water tube boiler

Direct mounted water level controllers

Direct mounted models (standard models)

Direct Mounted Vertical Air Break Controls have the same principles of operation and piece parts as the chamber-mounted equivalents, except that the chamber is exchanged for (1) a large round flange and (2) the tube assembly for mounting the control directly on to the boiler shell connection.

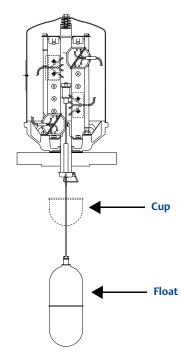
A fixed or removable stilling or guide tube should be provided to ensure that the float rod is not damaged and the correct vertical movement is achieved.

Direct mounted controls incorporating test facilities

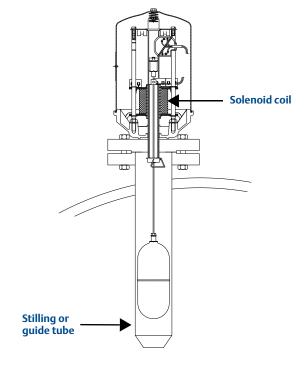
These controls have the provision for testing the operation of the mechanism without lowering the level of water in the boiler. Testing can be initiated manually or by a timer. U.K. Patent 1279504 or 1473939 and international equivalents.

Hydraulic cup test facility

The test is achieved by lowering the float to the low water alarm level, by the following means:


The float rod includes a **cup**, above the float, which is fed with water from the boiler feed pump via small bore pipework and valves through the control mounting flange (Figure 4) for approximately 24 seconds. The additional weight overcomes the buoyancy of the float, causing it to sink, stop the burner firing and operate the alarm system. After closing the test valve in the supply from the feed pump to the control, a small hole in the bottom of the cup drains off the water, permitting the float to rise to the normal operating position. Control of the water supply to the cup can alternatively be by means of a solenoid valve, which can be initiated by a timer or a manually operated push button. In this design the alarm switch remains fully adjustable.

Electromagnetic test facility


The switch head includes an inductive coil below the single switch subassembly (Figure 5). This surrounds an armature located inside the stainless steel centre tube and fixed to the float rod.

To initiate the test cycle, the coil can be energised by a timer or a manually operated push button and the float will be thrust downwards to stop the burner firing and operate the alarm system. When the coil is de-energised the float rises to its normal level. In this design the alarm switch unit is not adjustable.

Figure 4. Hydraulic cup test facility

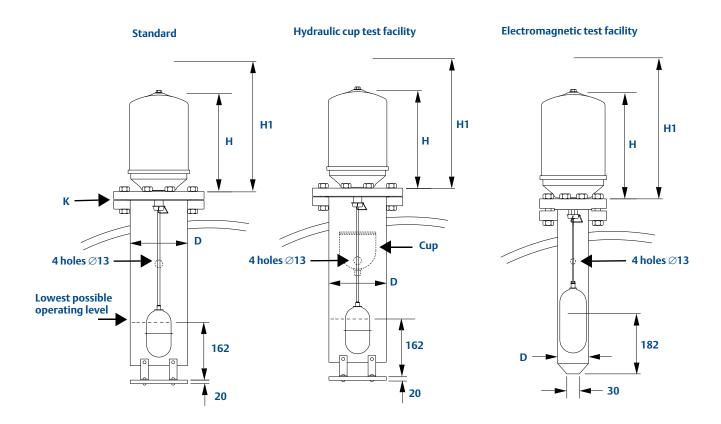


Figure 5. Electromagnetic test facility model

Туре	Working pressure at	Operate	No of swit	ches	- Forged steel	Float		Dimensions	;	Max.								
number	saturated steam kg/cm ²	range in mm	Std.	Max.	flanged connections	length x diameter	D min.	н	H1	float rod length								
Standard	·					·				-								
BD01/1		62	1	1				193	303									
BD02/2	21.0	150	2	4	EN1092 DN100 PN40	152 x 67	77	293	497	765								
BD03/2		250	2	6				393	597									
BD04/1		62	1	1	EN1092			193	303									
BD05/2	32.0	150	2	4	DN100 PN40	155 x 90	100	293	497	1016								
BD06/2		250	2	6	_			393	597									
BD07/2		120	2	4				293	497	260								
BD08/1	21.0	62	1	1	BM115mm Sq	152 x 67	77	193	303	765								
BD09/1		62	1	1	-			193	303	356								
BD10/1	13.0	62	1	1	BM115mm Sq	155 x 90	77	193	303	260								
BD11/2		150	2	4				293	497	765								
BD12/2		150	2	4	_			293	497	356								
BD13/2	21.0	150	2	4	DM11Emm Ca	152 x 67	77	293	497	298.5								
BD14/2	21.0	215	2	6	– BM115mm Sq	132 X 07	11	293	602	356								
BD15/2		250	2	6	_			293	602	756								
BD16/2		250	2	6	_			293	602	394								
BD21/2	32.0	150	2	4	EN1092	155 x 90	100	293	497	385								
BD22/2	. 52.0	250	2	6	DN100 PN40	155 X 90	100	393	602	385								
BD41/2	21.0	62	1	1	EN1092	152 x 67	77	193	303	298.5								
BD42/2	21.0	62	1	1	DN100 PN40	152 x 07	77	193	303	394								
BD43/1	22.0	62	1	1	EN1092	155 x 90	100	193	303	1016								
BD44/2	32.0	150	2	4	DN100 PN40	122 X 90	100	293	497	1016								
Hydraulic	cup test facility								1	·								
BDT01/1		62	1	1	EN1092			193	303									
BDT02/2	32.0	150	2	4	DN100 PN40	155 x 90	100	293	497	1016								
BDT03/2		250	2	6				393	597									
Electroma	gnetic test facilit	y		1	1				1									
BDT04/1	21.0	_	1	-	BM128mm sq							155	iq pi	1	100	202	407	1010
BDT05/1	32.0		1	_	DN100 PN40	155 x 90	100	293	497	1016								
i		I	L	1	1	I		1	1									

Table 4. Dimensions and Ordering Information: Direct Mounted Models

Modulating water level controllers

Description

The Mobrey Modulating Controller is a single element electro-hydraulic control with an electronic feedback system comprising:

i) A control unit float chamber, mounted on the boiler shell, fitted with an Inductance Coil 'A' head assembly which can be made suitable for either Industrial or Marine Applications.

ii) A flanged modulating valve, fitted with an Inductance Coil 'B' and twin solenoid valve assembly, which is mounted in the boiler feed water line.

iii) An electronic control box.

Operation

A positive change of water level in the boiler alters the inductance value of Coil "A" causing an imbalance in the system. This signal is transmitted through the electronic control box to the appropriate solenoid valve on the modulating valve thus producing a change of hydraulic pressure on the piston assembly, the movement of which modulates the flow of water to the boiler. Simultaneously this same vertical travel creates a change in the inductance value of Coil "B" until the balance is restored, thus closing the solenoid valve and hydraulically locking the modulating valve spindle.

This sequence is repeated in very small steps until the feed water input equals the required evaporation rate of the boiler. To prevent the modulating valve responding to random water movement against the general direction of level change, a 13 mm reversal or (dead) band is incorporated in the electronic circuitry.

Low water alarm and burner cut out contacts are also provided within the control box to operate when the water level falls to a predetermined position.

General note

Models shown are for 21 kg/cm^2 maximum working pressure. Details of modules for 32 kg/cm^2 will be provided on request.

Installation note

- For the further safety of boilers, it is recommended that the Mobrey Control Unit is mounted on a Mobrey Sequencing Valve.
- The water connection from the boiler to the float chamber should be as short as possible and the control head float chamber should be mounted close to the gauge glasses.
- The chamber band mark indicates the lowest adjustment position of the low level alarm and it is our recommendation that the positioning of the boiler control chambers relative to the water level gauge glasses and the N.W.L. is such that there is always water visible in the gauge glass even at the lowest operating band level. If required our technical staff will advise on individual installations.

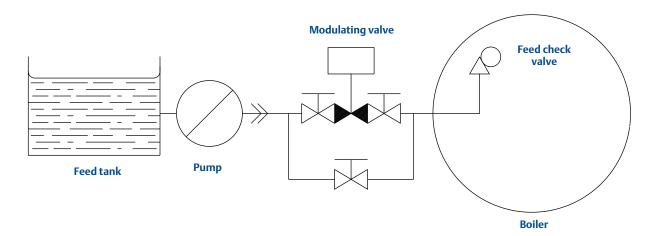
Features

- Inherently stable
- Easily adjusted for individual operating requirements
- Instant reversion to hand control in emergency.

Application notes

Throttle control

- Modulating Valve in feed line
- Suitable for automatic cold start conditions
- Used for all pumps capable of operating against a closed discharge.


With a rising water level in the boiler, the modulating valve closes progressively to reduce the rate of feed into the boiler. The size of valve lid is determined by the actual capacity of the boiler plus an allowance. See page 13.

Power failure and high water shutdown – with a third solenoid valve

Where one pump is feeding more than one boiler it is imperative that a boiler cannot be overfilled Therefore a third solenoid valve can be installed on the modulating valve which is operated by either a loss of power on the boiler control circuit or the high water alarm. In either case the valve will be closed and prevent further water entering the boiler. The third solenoid valve can be retrofitted to existing valves.

Common feed pump arrangement

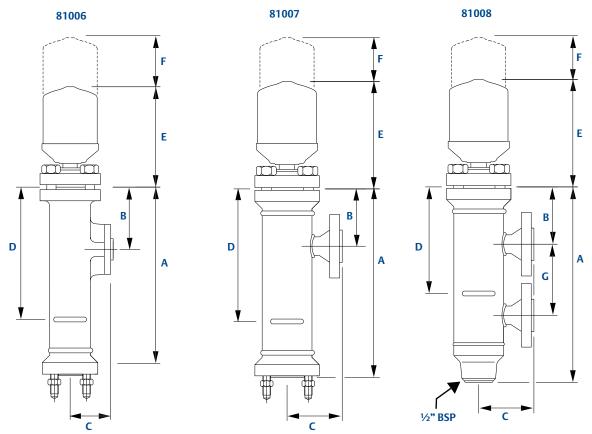

Multi-boiler installations operating on a common feed system require special sizing consideration and full details should be provided so that a suitable valve can be recommended.

Figure 6. Installation with a modulating valve

Control units

Table 5. Standard control heads and chambers

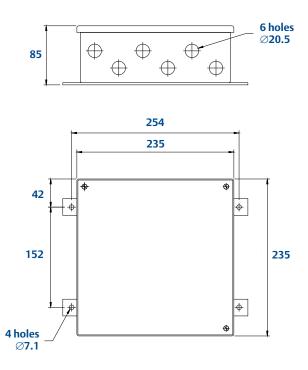

Models are available for up to 32kg/cm² steam working. Details on request.

Table 6. Standard control heads and chambers

Type number	81006	81007	81008	81951
Material	Cast iron	Fabricated steel	Fabricated steel	Forged steel flange
Max. pressure kg/cm ²	13	21	21	32
Connections	Side and bottom EN1092 DN25 PN16	Side and bottom EN1092 DN25 PN40	Side and side EN1092 DN25 PN25	Direct mounted EN1092 DN100 PN40
Α	468	468	570	-
В	100	100	100	-
c	102	87	100	-
D	277	277	335	-
E	390	390	390	390
F	430	430	430	430
G	_	_	270	-

Control box

Figure 7. Control box

Table 7. Control box options

Type number	80436	80660
Input supply	240 Vac 50/60 Hz	110 Vac 50/60 Hz
присзарру	±10%	±10%

Electrical characteristics

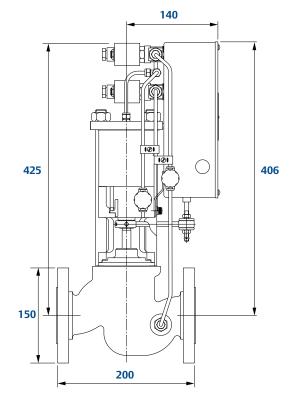
Input circuit protected by 1 amp HRC fuse.

Alarm and control relays protected by 2 amp HRC fuses.

Relay contacts voltage free rating:-

- Maximum voltage: 250 Vac
- Maximum current: 2 amp

Facility available to special order for separate supply to solenoid valves with 2 Amp HRC maximum protection.


Output option: 0 to 10 V available on request.

Important notice

Electronic control box must not be subjected to either vibration or excessive temperature. It is therefore recommended that they are NOT mounted directly on to the boiler shell.

Modulating valves

Figure 8. Modulating valves

Valve body: Cast steel Feed line pressure: Maximum 40 kg/cm²; Minimum 5.3 kg/cm² Feed line temperature: Maximum 120 °C Flanged EN1092 DN40 PN40 and 1½" BS10 table H

Table 8. Modulating valve options

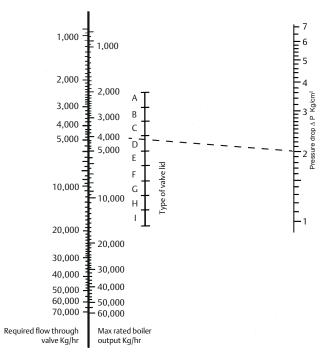
Type number	Flanged	No. of solenoid valves	Electrical supply
80310/*	1½" table H	2	230 Vac 50 Hz
80311/*	DN40 PN40	2	230 Vac 50 Hz
80653/*	DN40 PN40	2	110 Vac 50 Hz
80486/*	DN40 PN40	2	230 Vac 50 Hz
80310/80435/*	1½" table H	3	230 Vac 50 Hz
80311/80435/*	DN40 PN40	3	230 Vac 50 Hz
80653/80435/*	DN40 PN40	3	110 Vac 50 Hz

Note

The internal trim on the modulating valve can be changed without the need to replace the valve should operating conditions change.

Sizing of valve lids

A range of valve lids and associated seats are available, and provide linear flow characteristics. A table of Cv values for water (S.G.=1) is given below for valve lids in the fully open position.


Table 9. Sizing of valve lids

Type of lid	Cv = kg/hr for 1 kg/cm ²
A	1690
В	2260
с	3030
D	4100
E	5480
F	7480
G	9840
н	13520
I	18480

Note

The J-type Lid is available on request for larger boilers.

Table 10. Modulating Level Controller valve size chart

The formula for determining the Cv value and correct size of valve lid are given below. The pressure drop across the valve should be 1.4 kg/cm^2 or greater – normally, the higher the pressure drop the better the degree of control. The lid size is that with the nearest Cv value above the calculated value.

$$Cv = \frac{Q}{\sqrt{P}}$$

Where:

Q = Actual Evaporation of Boiler plus 15 per cent margin kg/hr.

P = Pump discharge pressure in kg/ cm² when passing Q quantity of water minus (boiler max working pressure + 0.4 kg/cm²).

In the following example, an allowance of 0.4 kg/cm² has been made for all feed line losses. In practice, the allowance should be that of the installation under consideration and may well be in excess of 0.4 kg/cm², particularly where the feed pump is remote from the boiler and/or where an anti-siphon valve adjacent to the boiler feed check valve has been fitted.

Example

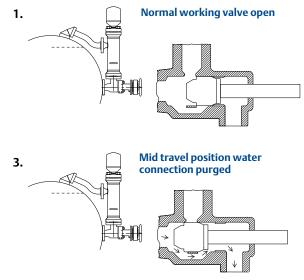
Boiler evaporation (actual) = 4000 kg/hr. Boiler working pressure = 6.6 kg/cm² Pump discharge pressure at Q quantity = 6.6 kg/cm²

$$Cv = \frac{4000 \times 1.15}{\sqrt{11 - (6.6 + 0.4)}} = 2300$$

Lid required: Type C

Sequencing blowdown valves

Description


A purpose built flanged isolating angle and sequencing valve with 1/2" BSP screwed drain connection and back seating features, all valve trims are in stainless steel.

Function

The Mobrey sequencing valve is designed to function as a combined water isolating valve and a sequencing valve to provide positive purging of the water connection, float chamber and steam connection of a boiler control.

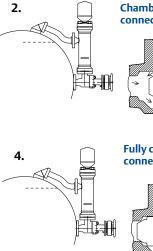
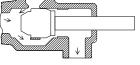
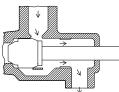

Blowdown of float chamber and connections is effected separately and in a predetermined sequence by the operation of the single specially designed hand-wheel.

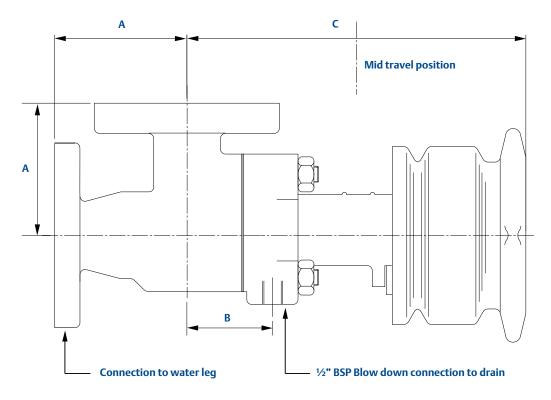
Figure 9. Sequence of operation



Features


- One valve to provide separate blowdown of:
 - Control Chamber
 - Steam Connection
 - Water Connection
- Blowdown by predetermined sequence
- Stainless steel trim
- Back seating ensures packings are not subjected to continuous pressure
- Available with Imperial or Metric flanges
- Available for pressures up to 32 kg/cm²

Chamber, steam and water connections purged



Fully closed position steam connection and chamber purged

Dimensions and Ordering Information

Figure 10. Dimensions

Table 11. Ordering information

Туре	Flange		Maximum	Dimensions				
number	connections EN1092	Material body and stuffing box	working pressure (bar)	A	В	С		
80938	DN25 PN16	Cast iron	13 ⁽¹⁾	83	54	219		
80947	DN25 PN25	Gunmetal	21	83	54	219		
80951	DN25 PN40	Cast steel	32	83	54	219		
81390	BS10 Table H	Gunmetal	21	83	54	210		

(1) The maximum working pressure is 10.5 bar for Lloyds applications.

Important

The blowdown connection should be piped directly to an independent covered drain, or tun dish with removable lid, capable of accepting the full discharge without danger of blow-back. The bore of blowdown pipe should not be less than 12 mm and the length should be kept as short as possible. Sight glasses must not be fitted in the blowdown line.

Blowdown procedure card

Delta Mobrey produce a useful blowdown procedure card, part number BP109, which is available on request.

Head Office

Delta Mobrey Limted Riverside Business Park, Dogflud Way Farnham, Surrey, GU9 7SS ● +44 (0)1252 729140 ⇒ +44 (0)1252 729168 Simobrey@delta-mobrey.com

Terms and Conditions of Sale are available upon request. All other marks are the property of their respective owners. © 2020 Delta Mobrey Ltd. All rights reserved.

